近年来,量子信息处理 (QIP) 的许多领域都取得了巨大进步,包括量子隐形传态 [1, 2]、量子秘密共享 [3]、量子密钥分发 [4, 5]、量子安全直接通信 [6, 7]、量子密集编码 [8]、量子算法 [9–12] 和量子门 [13–15]。由于量子通信利用量子相干叠加和量子纠缠效应,其传播速率和可靠性高于传统通信方法 [16]。此外,量子计算在高效搜索无序数据库中的目标项和分解大整数方面表现出比传统方法更高的性能 [16]。最近,已经提出了许多复杂的方法来通过采用多个自由度 (DOF) 来改进传统方法。多自由度具有广泛的应用前景,包括实现超并行量子计算 [17]、量子通信 [18]、简化量子计算 [19]、高维量子增强子 [20],以及完成单自由度系统无法解决的特定确定性任务,如确定性线性光学量子算法 [21]、确定性线性光学量子门 [22]、线性光学隐形传态 [2] 和无需共享参考框架的量子密钥分发 [23]。此外,超并行量子增强子由于其优异的优势而备受关注,使其成为长距离量子保密通信和量子计算机的潜在候选者。超并行 QIP 的操作可在两个或多个不同的自由度上同时执行,具有抗光子耗散噪声的潜力,可以提高量子信道容量,提高量子通信的安全性,降低实验要求和资源开销,提高协议的成功率,提高量子计算的速度。最近,已报道了各种超纠缠态,例如,偏振空间能量超纠缠态 [24]、偏振时间箱超纠缠态 [25]、自旋运动超纠缠态 [26]、偏振动量超纠缠态 [27]、偏振时间频率超纠缠态 [28] 和多路径超纠缠态 [29]。这些资源可以帮助我们用一个自由度实现许多重要的量子任务,例如利用线性光学完成纠缠态分析[30, 31]、纠缠纯化和浓缩[32]、单自由度团簇态制备和单向量子计算[33]、量子纠错[34]、隐形传态[27]、线性光子超稠密编码[35]、增强型违反局部现实论[36]和量子算法[29]。此外,超纠缠还在超并行光子量子计算[37, 38]、超纠缠交换[39]、超隐形传态[40]、超纠缠态分析[41–43]、超并行中继器[44]、超纠缠纯化[45, 46]和超纠缠浓缩[47, 48]。光子已经成为超并行QIP的优秀候选者,因为它们拥有大量可用的量子比特,例如自由度,包括偏振[49]、空间模式[24]、横向轨道角动量[50, 51]、时间箱[52]、频率(或颜色)[53]和连续可变的能量时间模式[54]。此外,由于自由空间中的退相干可以忽略不计,光子不仅可以轻松地在长距离上携带量子信息,而且还可以通过线性光学元件以极快和精确的方式对其进行操纵,并以高效的方式产生[55]。使用标准线性光学元件灵活控制光子是一种有趣的
主要关键词